extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C18).1C32 = C2×C27⋊C9 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 54 | 9 | (C3xC18).1C3^2 | 486,82 |
(C3×C18).2C32 = C2×C32.He3 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 54 | 9 | (C3xC18).2C3^2 | 486,88 |
(C3×C18).3C32 = C2×C32.5He3 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 54 | 9 | (C3xC18).3C3^2 | 486,89 |
(C3×C18).4C32 = C2×C32.6He3 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 54 | 9 | (C3xC18).4C3^2 | 486,90 |
(C3×C18).5C32 = C2×C9⋊He3 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 162 | | (C3xC18).5C3^2 | 486,198 |
(C3×C18).6C32 = C2×C32.23C33 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 162 | | (C3xC18).6C3^2 | 486,199 |
(C3×C18).7C32 = C2×C9⋊3- 1+2 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 162 | | (C3xC18).7C3^2 | 486,200 |
(C3×C18).8C32 = C2×C33.31C32 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 162 | | (C3xC18).8C3^2 | 486,201 |
(C3×C18).9C32 = C2×C92⋊7C3 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 162 | | (C3xC18).9C3^2 | 486,202 |
(C3×C18).10C32 = C2×C92⋊4C3 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 162 | | (C3xC18).10C3^2 | 486,203 |
(C3×C18).11C32 = C2×C92⋊5C3 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 162 | | (C3xC18).11C3^2 | 486,204 |
(C3×C18).12C32 = C2×C92⋊8C3 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 162 | | (C3xC18).12C3^2 | 486,205 |
(C3×C18).13C32 = C2×C92⋊9C3 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 162 | | (C3xC18).13C3^2 | 486,206 |
(C3×C18).14C32 = C2×C32.C33 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 54 | 9 | (C3xC18).14C3^2 | 486,218 |
(C3×C18).15C32 = C2×C9.2He3 | φ: C32/C1 → C32 ⊆ Aut C3×C18 | 54 | 9 | (C3xC18).15C3^2 | 486,219 |
(C3×C18).16C32 = C2×C92⋊C3 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 54 | 3 | (C3xC18).16C3^2 | 486,85 |
(C3×C18).17C32 = C2×C92⋊2C3 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 54 | 3 | (C3xC18).17C3^2 | 486,86 |
(C3×C18).18C32 = C2×C92.C3 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 54 | 3 | (C3xC18).18C3^2 | 486,87 |
(C3×C18).19C32 = C2×C92⋊3C3 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 162 | | (C3xC18).19C3^2 | 486,193 |
(C3×C18).20C32 = C18×He3 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 162 | | (C3xC18).20C3^2 | 486,194 |
(C3×C18).21C32 = C6×C3.He3 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 162 | | (C3xC18).21C3^2 | 486,213 |
(C3×C18).22C32 = C2×C9.He3 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 54 | 3 | (C3xC18).22C3^2 | 486,214 |
(C3×C18).23C32 = C2×C9.4He3 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 54 | 3 | (C3xC18).23C3^2 | 486,76 |
(C3×C18).24C32 = C2×C9.5He3 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 162 | 3 | (C3xC18).24C3^2 | 486,79 |
(C3×C18).25C32 = C2×C9.6He3 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 162 | 3 | (C3xC18).25C3^2 | 486,80 |
(C3×C18).26C32 = C6×C9⋊C9 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 486 | | (C3xC18).26C3^2 | 486,192 |
(C3×C18).27C32 = C18×3- 1+2 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 162 | | (C3xC18).27C3^2 | 486,195 |
(C3×C18).28C32 = C6×C27⋊C3 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 162 | | (C3xC18).28C3^2 | 486,208 |
(C3×C18).29C32 = C2×C27○He3 | φ: C32/C3 → C3 ⊆ Aut C3×C18 | 162 | 3 | (C3xC18).29C3^2 | 486,209 |
(C3×C18).30C32 = C2×C27⋊2C9 | central extension (φ=1) | 486 | | (C3xC18).30C3^2 | 486,71 |
(C3×C18).31C32 = C2×C32⋊C27 | central extension (φ=1) | 162 | | (C3xC18).31C3^2 | 486,72 |
(C3×C18).32C32 = C2×C9⋊C27 | central extension (φ=1) | 486 | | (C3xC18).32C3^2 | 486,81 |